College Physics A Strategic Approach Volume 1 (Chs 1-16)

by ; ;
Edition: 4th
Format: Paperback
Pub. Date: 2018-01-09
Publisher(s): Pearson
List Price: $206.64

Buy New

Usually Ships in 2-3 Business Days

Buy Used

In Stock Usually Ships in 24-48 Hours

Rent Textbook

Select for Price
There was a problem. Please try again later.

Rent Digital eBook

Online: 1825 Days
Downloadable: Lifetime Access

This item is being sold by an Individual Seller and will not ship from the Online Bookstore's warehouse. The Seller must confirm the order within two business days. If the Seller refuses to sell or fails to confirm within this time frame, then the order is cancelled.

Please be sure to read the Description offered by the Seller.


For courses in algebra-based introductory physics.


Make physics relevant for today's mixed-majors students

College Physics: A Strategic Approach, Volume 1 (Chs 1-16), 4th Edition expands its focus from how mixed majors students learn physics to focusing on why these students learn physics. The authors apply the best results from educational research and Mastering Physics metadata to present basic physics in real world examples that engage students and connect physics with other fields, including biological sciences, architecture, and natural resources. From these connections, students not only to learn in research-driven ways but also understand why they are taking the course and how it applies to other areas.


Extensive new media and an interactive Pearson eText pique student interest while challenging misconceptions and fostering critical thinking. New examples, explanations, and problems use real data from research to show physics at work in relatable situations, and help students see that physics is the science underlying everything around them.   A Strategic Approach, Volume 1 (Chs 1-16), 4th Edition, encourages today’s students to understand the big picture, gain crucial problem-solving skills and come to class both prepared and confident.


Also available with Mastering Physics

Mastering™ is the teaching and learning platform that empowers you to reach every student. By combining trusted author content with digital tools developed to engage students and emulate the office-hour experience, Mastering personalizes learning and often improves results for each student. With Learning Catalytics instructors can expand on key concepts and encourage student engagement during lecture through questions answered individually or in pairs and groups. Students also master concepts through book-specific Mastering Physics assignments, which provide hints and answer-specific feedback that build problem-solving skills. Mastering Physics now provides students with the new Physics Primer for remediation of math skills needed in the college physics course.

Note: You are purchasing a standalone product; Mastering Physics does not come packaged with this content. Students, if interested in purchasing this title with Mastering Physics, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information.


If you would like to purchase bot hthe physical text CONTAINING CHAPTERS 1-30 and Mastering Physics, search for:

0134641493 / 9780134641492 College Physics: A Strategic Approach Plus Mastering Physics with Pearson eText -- Access Card Package

Package consists of:

  • 0134609034 / 9780134609034 College Physics: A Strategic Approach
  • 0134609891 / 9780134609898 Student Workbook for College Physics: A Strategic Approach
  • 0134667042 / 9780134667041 Mastering Physics with Pearson eText -- ValuePack Access Card -- for College Physics: A Strategic Approach


Author Biography

Randy Knight taught introductory physics for 32 years at Ohio State University and California Polytechnic State University, where he is Professor Emeritus of Physics. Professor Knight received a Ph.D. in physics from the University of California, Berkeley and was a post-doctoral fellow at the Harvard-Smithsonian Center for Astrophysics before joining the faculty at Ohio State University. It was at Ohio State that he began to learn about the research in physics education that, many years later, led to Five Easy Lessons: Strategies for Successful Physics Teaching and this book, as well as Physics for Scientists and Engineers: A Strategic Approach. Professor Knight’s research interests are in the fields of laser spectroscopy and environmental science. When he’s not in front of a computer, you can find Randy hiking, sea kayaking, playing the piano, or spending time with his wife Sally and their five cats.


Brian Jones has won several teaching awards at Colorado State University during his 30 years teaching in the Department of Physics. His teaching focus in recent years has been the College Physics class, including writing problems for the MCAT exam and helping students review for this test. In 2011, Brian was awarded the Robert A. Millikan Medal of the American Association of Physics Teachers for his work as director of the Little Shop of Physics, a hands-on science outreach program. He is actively exploring the effectiveness of methods of informal science education and how to extend these lessons to the college classroom. Brian has been invited to give workshops on techniques of science instruction throughout the United States and in Belize, Chile, Ethiopia, Azerbaijan, Mexico, Slovenia, Norway, and Namibia. Brian and his wife Carol have dozens of fruit trees and bushes in their yard, including an apple tree that was propagated from a tree in Isaac Newton’s garden.


Stuart Field has been interested in science and technology his whole life. While in school he built telescopes, electronic circuits, and computers. After attending Stanford University, he earned a Ph.D. at the University of Chicago, where he studied the properties of materials at ultralow temperatures. After completing a postdoctoral position at the Massachusetts Institute of Technology, he held a faculty position at the University of Michigan. Currently at Colorado State University, Stuart teaches a variety of physics courses, including algebra-based introductory physics, and was an early and enthusiastic adopter of Knight’s Physics for Scientists and Engineers. Stuart maintains an active research program in the area of superconductivity. Stuart enjoys Colorado’s great outdoors, where he is an avid mountain biker; he also plays in local ice hockey leagues.



Table of Contents


PART I Force and Motion

OVERVIEW The Science of Physics


1. Representing Motion

1.1 Motion: A First Look

1.2 Models and Modeling

1.3 Position and Time: Putting Numbers on Nature

1.4 Velocity

1.5 A Sense of Scale: Significant Figures, Scientific Notation, and Units

1.6 Vectors and Motion: A First Look

1.7 Where Do We Go from Here?




2. Motion in One Dimension

2.1 Describing Motion

2.2 Uniform Motion

2.3 Instantaneous Velocity

2.4 Acceleration

2.5 Motion with Constant Acceleration

2.6 Solving One-Dimensional Motion Problems

2.7 Free Fall




4 Forces and Newton’s Laws of Motion

4.1 Motion and Forces

4.2 A Short Catalog of Forces

4.3 Identifying Forces

4.4 What Do Forces Do?

4.5 Newton’s Second Law

4.6 Free-Body Diagrams

4.7 Newton’s Third Law




5 Applying Newton’s Laws

5.1 Equilibrium

5.2 Dynamics and Newton’s

Second Law

5.3 Mass and Weight

5.4 Normal Forces

5.5 Friction

5.6 Drag

5.7 Interacting Objects

5.8 Ropes and Pulleys




6 Circular Motion, Orbits, and Gravity

6.1 Uniform Circular Motion

6.2 Dynamics of Uniform Circular Motion

6.3 Apparent Forces in Circular Motion

6.4 Circular Orbits and Weightlessness

6.5 Newton’s Law of Gravity

6.6 Gravity and Orbits




7 Rotational Motion

7.1 Describing Circular and Rotational Motion

7.2 The Rotation of a Rigid Body

7.3 Torque

7.4 Gravitational Torque and the Center of Gravity

7.5 Rotational Dynamics and Moment of Inertia

7.6 Using Newton’s Second Law for Rotation

7.7 Rolling Motion




8 Equilibrium and Elasticity

8.1 Torque and Static Equilibrium

8.2 Stability and Balance

8.3 Springs and Hooke’s Law

8.4 Stretching and Compressing Materials

8.5 Forces and Torques in the Body



PART I SUMMARY Force and Motion

ONE STEP BEYOND Dark Matter and the Structure of the Universe


Detailed Contents


PART II Conservation Laws

OVERVIEW Why Some Things Stay the Same


9 Momentum

9.1 Impulse

9.2 Momentum and the Impulse-Momentum Theorem

9.3 Solving Impulse and Momentum Problems

9.4 Conservation of Momentum

9.5 Inelastic Collisions

9.6 Momentum and Collisions in Two Dimensions

9.7 Angular Momentum




10 Energy and Work

10.1 The Basic Energy Model

10.2 Work

10.3 Kinetic Energy

10.4 Potential Energy

10.5 Thermal Energy

10.6 Conservation of Energy

10.7 Energy Diagrams

10.8 Molecular Bonds and Chemical Energy

10.9 Energy in Collisions

10.10 Power




11 Using Energy

11.1 Transforming Energy

11.2 Energy in the Body

11.3 Temperature, Thermal Energy, and Heat

11.4 The First Law of Thermodynamics

11.5 Heat Engines

11.6 Heat Pumps

11.7 Entropy and the Second Law of Thermodynamics

11.8 Systems, Energy, and Entropy



PART II SUMMARY Conservation Laws

ONE STEP BEYOND Order Out of Chaos




PART III Properties of Matter

OVERVIEW Beyond the Particle Model


12 Thermal Properties of Matter

12.1 The Atomic Model of Matter

12.2 The Atomic Model of an Ideal Gas

12.3 Ideal-Gas Processes

12.4 Thermal Expansion

12.5 Specific Heat and Heat of Transformation

12.6 Calorimetry

12.7 Specific Heats of Gases

12.8 Heat Transfer

12.9 Diffusion




13 Fluids

13.1 Fluids and Density

13.2 Pressure

13.3 Buoyancy

13.4 Fluids in Motion

13.5 Fluid Dynamics

13.6 Viscosity and Poiseuille’s Equation

13.7 The Circulatory System



PART III SUMMARY Properties of Matter




PART IV Oscillations and Waves

OVERVIEW Motion That Repeats Again and Again



14.1 Equilibrium and Oscillation

14.2 Linear Restoring Forces and SHM

14.3 Describing Simple Harmonic Motion

14.4 Energy in Simple Harmonic Motion

14.5 Pendulum Motion

14.6 Damped Oscillations

14.7 Driven Oscillations and Resonance




15 Traveling Waves and Sound

15.1 The Wave Model

15.2 Traveling Waves

15.3 Graphical and Mathematical

Descriptions of Waves

15.4 Sound and Light Waves

15.5 Energy and Intensity

15.6 Loudness of Sound

15.7 The Doppler Effect and

Shock Waves




16 Superposition and Standing Waves

16.1 The Principle of Superposition

16.2 Standing Waves

16.3 Standing Waves on a String

16.4 Standing Sound Waves

16.5 Speech and Hearing

16.6 The Interference of Waves from Two Sources

16.7 Beats



PART IV SUMMARY Oscillations and Waves

ONE STEP BEYOND Waves in the Earth and the



Appendix A Mathematics Review

Appendix B Periodic Table of Elements

Appendix C Atomic and Nuclear Data

Answers to Odd-Numbered Problems


An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.