|
|
1 | (12) |
|
|
2 | (1) |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
3 | (1) |
|
Importance of Perspective |
|
|
3 | (2) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
Quantitative or Qualitative? |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
Independent and Dependent Variables |
|
|
7 | (2) |
|
|
9 | (4) |
|
|
10 | (1) |
|
|
11 | (2) |
PART I Descriptive Statistics Organizing and Summarizing Data |
|
13 | (162) |
|
Describing Data with Tables |
|
|
15 | (24) |
|
Frequency Distributions for Quantitative Data |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
17 | (2) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (3) |
|
|
23 | (1) |
|
Other Types of Frequency Distributions |
|
|
24 | (1) |
|
Relative Frequency Distributions |
|
|
24 | (1) |
|
|
25 | (1) |
|
Cumulative Frequency Distributions |
|
|
26 | (2) |
|
|
28 | (1) |
|
Exact Percentile Ranks (from Ungrouped Data) |
|
|
28 | (1) |
|
Frequency Distributions for Qualitative Data |
|
|
29 | (2) |
|
Interpreting Distributions Constructed by Others |
|
|
31 | (8) |
|
|
32 | (1) |
|
|
33 | (6) |
|
Describing Data with Graphs |
|
|
39 | (20) |
|
Graphs for Quantitative Data |
|
|
40 | (1) |
|
|
40 | (2) |
|
|
42 | (2) |
|
|
44 | (1) |
|
|
45 | (3) |
|
A Graph for Qualitative Data |
|
|
48 | (1) |
|
|
48 | (2) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (8) |
|
|
56 | (1) |
|
|
57 | (2) |
|
Describing Data with Averages |
|
|
59 | (14) |
|
Averages for Quantitative Data |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (2) |
|
|
63 | (3) |
|
|
66 | (2) |
|
Special Status of the Mean |
|
|
68 | (1) |
|
Averages for Qualitative Data |
|
|
68 | (1) |
|
|
69 | (4) |
|
|
70 | (1) |
|
|
70 | (3) |
|
|
73 | (18) |
|
Quantitative Measures of Variability |
|
|
74 | (1) |
|
|
74 | (1) |
|
|
75 | (1) |
|
Interquartile Range (IQR) |
|
|
75 | (2) |
|
|
77 | (1) |
|
Definition Formula for Variance |
|
|
78 | (2) |
|
Computation Formula for Sample Variance |
|
|
80 | (1) |
|
|
80 | (2) |
|
|
82 | (1) |
|
Standard Deviation: An Interpretation |
|
|
83 | (1) |
|
Standard Deviation: Some Generalizations |
|
|
83 | (2) |
|
Standard Deviation: A Measurement of Distance |
|
|
85 | (2) |
|
Measures of Variability for Qualitative Data |
|
|
87 | (4) |
|
|
87 | (1) |
|
|
88 | (3) |
|
Normal Distributions: (I): Basics |
|
|
91 | (12) |
|
The Theoretical Normal Curve |
|
|
92 | (1) |
|
Properties of the Normal Curve |
|
|
93 | (1) |
|
|
94 | (2) |
|
|
96 | (1) |
|
|
97 | (2) |
|
|
99 | (1) |
|
|
100 | (3) |
|
|
101 | (1) |
|
|
101 | (2) |
|
Normal Distributions: (II): Applications |
|
|
103 | (16) |
|
|
104 | (1) |
|
Example: Finding Proportion below a Score (to Left of Mean) |
|
|
104 | (1) |
|
Example: Finding Proportion below a Score (to Right of Mean) |
|
|
104 | (2) |
|
Example: Finding Proportion between Two Scores |
|
|
106 | (2) |
|
Example: Finding Proportions beyond Pairs of Scores |
|
|
108 | (2) |
|
|
110 | (1) |
|
Example: Finding a Score (to Right of Mean) |
|
|
110 | (3) |
|
Example: Finding Pairs of Scores (on Both Sides of Mean) |
|
|
113 | (6) |
|
|
116 | (1) |
|
|
116 | (3) |
|
|
119 | (10) |
|
z Scores for Non-normal Distributions |
|
|
119 | (2) |
|
|
121 | (1) |
|
Transformed Standard Scores |
|
|
121 | (1) |
|
Converting to Transformed Standard Scores |
|
|
121 | (2) |
|
|
123 | (6) |
|
|
124 | (1) |
|
|
125 | (4) |
|
Describing Relationships: Correlation |
|
|
129 | (24) |
|
|
130 | (2) |
|
|
132 | (4) |
|
A Correlation Coefficient for Quantitative Data: r |
|
|
136 | (1) |
|
|
137 | (4) |
|
Computation Formula for r |
|
|
141 | (1) |
|
|
142 | (2) |
|
Interpretation of r2 (See Section 10.9) |
|
|
144 | (1) |
|
Correlation Not Necessarily Cause-Effect |
|
|
144 | (1) |
|
Other Types of Correlation Coefficients |
|
|
145 | (1) |
|
|
146 | (7) |
|
|
149 | (1) |
|
|
150 | (3) |
|
|
153 | (22) |
|
|
153 | (2) |
|
|
155 | (2) |
|
Least Squares Prediction Line |
|
|
157 | (1) |
|
|
158 | (3) |
|
|
161 | (1) |
|
Standard Error of Prediction, Sy/x |
|
|
161 | (2) |
|
|
163 | (1) |
|
More Complex Prediction Equations |
|
|
164 | (1) |
|
|
165 | (5) |
|
|
170 | (5) |
|
|
171 | (1) |
|
|
172 | (3) |
PART II Inferential Statistics Generalizing Beyond Data |
|
175 | (392) |
|
|
177 | (12) |
|
|
178 | (1) |
|
|
178 | (1) |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
181 | (2) |
|
|
183 | (1) |
|
Random Assignment of Subjects |
|
|
183 | (2) |
|
An Overview: Surveys or Experiments? |
|
|
185 | (4) |
|
|
186 | (1) |
|
|
186 | (3) |
|
|
189 | (12) |
|
|
190 | (1) |
|
|
190 | (2) |
|
|
192 | (3) |
|
Probability and Statistics |
|
|
195 | (6) |
|
|
197 | (1) |
|
|
197 | (4) |
|
Sampling Distribution of the Mean |
|
|
201 | (16) |
|
|
201 | (2) |
|
Creating a Sampling Distributions from Scratch |
|
|
203 | (3) |
|
|
206 | (1) |
|
Mean of All Sample Means (μx) |
|
|
207 | (1) |
|
Standard Error of the Mean (σx) |
|
|
208 | (2) |
|
Shape of the Sampling Distribution |
|
|
210 | (1) |
|
Why the Central Limit Theorem Works |
|
|
211 | (1) |
|
Other Sampling Distributions |
|
|
212 | (5) |
|
|
213 | (1) |
|
|
214 | (3) |
|
Introduction to Hypothesis Testing: The z Test |
|
|
217 | (16) |
|
Testing a Hypothesis about SAT Scores |
|
|
218 | (2) |
|
z Test for a Population Mean |
|
|
220 | (3) |
|
|
223 | (1) |
|
Statement of the Research Problem |
|
|
223 | (1) |
|
|
224 | (1) |
|
Alternative Hypothesis (H1) |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
228 | (5) |
|
|
229 | (1) |
|
|
230 | (3) |
|
More about Hypothesis Testing |
|
|
233 | (14) |
|
Hypothesis Testing: An Overview |
|
|
233 | (2) |
|
|
235 | (1) |
|
Why the Research Hypothesis Isn't Tested Directly |
|
|
236 | (1) |
|
One--tailed and Two--tailed Tests |
|
|
237 | (4) |
|
Choosing a Level of Significance (α) |
|
|
241 | (6) |
|
|
243 | (1) |
|
|
244 | (3) |
|
Controlling Type I and Type II Errors |
|
|
247 | (16) |
|
Testing a Hypothesis about Vitamin C |
|
|
247 | (2) |
|
|
249 | (1) |
|
|
250 | (2) |
|
If H0 Is False Because of a Large Effect |
|
|
252 | (2) |
|
If H0 Is False Because of a Small Effect |
|
|
254 | (1) |
|
|
255 | (2) |
|
|
257 | (1) |
|
|
258 | (5) |
|
|
259 | (1) |
|
|
260 | (3) |
|
|
263 | (14) |
|
Estimating μ for SAT Scores |
|
|
263 | (1) |
|
|
264 | (1) |
|
Confidence Interval for μ |
|
|
264 | (1) |
|
Why Confidence Intervals Work |
|
|
265 | (3) |
|
Confidence Interval for μ Based on z |
|
|
268 | (1) |
|
Interpretation of a Confidence Interval |
|
|
269 | (1) |
|
|
270 | (1) |
|
|
271 | (1) |
|
Hypothesis Tests or Confidence Intervals? |
|
|
271 | (1) |
|
Confidence Interval for Population Percent |
|
|
272 | (2) |
|
Other Types of Confidence Intervals |
|
|
274 | (3) |
|
|
274 | (1) |
|
|
275 | (2) |
|
|
277 | (16) |
|
t Test for a Population Mean |
|
|
277 | (2) |
|
|
279 | (1) |
|
|
280 | (1) |
|
Estimating the Population Standard Deviation |
|
|
281 | (3) |
|
|
284 | (1) |
|
Confidence Intervals for μ Based on t |
|
|
285 | (2) |
|
|
287 | (1) |
|
|
287 | (2) |
|
Hypothesis Tests: An Overview |
|
|
289 | (4) |
|
|
289 | (1) |
|
|
290 | (3) |
|
t Test for Two Independent Samples |
|
|
293 | (18) |
|
|
294 | (1) |
|
|
294 | (1) |
|
Two Hypothetical Populations |
|
|
294 | (1) |
|
|
295 | (2) |
|
Sampling Distribution of X1-X2 |
|
|
297 | (1) |
|
Mean of the Sampling Distribution of X1-X2 |
|
|
297 | (1) |
|
Standard Error of the Sampling Distribution of X1-X2 |
|
|
298 | (1) |
|
|
298 | (1) |
|
|
298 | (1) |
|
Calculating the Estimated Standard Error |
|
|
299 | (3) |
|
t Test for the Blood-Doping Experiment |
|
|
302 | (1) |
|
Confidence Interval for μ1-μ2 |
|
|
303 | (3) |
|
|
306 | (5) |
|
|
306 | (1) |
|
|
307 | (4) |
|
t Test for Two Matched Samples |
|
|
311 | (20) |
|
|
312 | (1) |
|
Matching Pairs of Athletes in the Blood--Doping Experiment |
|
|
312 | (1) |
|
|
312 | (1) |
|
|
313 | (1) |
|
|
313 | (1) |
|
Sampling Distribution of D |
|
|
314 | (1) |
|
|
314 | (1) |
|
t Test for the Blood--Doping Experiment |
|
|
315 | (3) |
|
Confidence Interval for μD |
|
|
318 | (1) |
|
To Match or Not to Match? |
|
|
319 | (1) |
|
Using the Same Subjects in Both Groups (Repeated Measures) |
|
|
320 | (1) |
|
|
321 | (1) |
|
Three t Tests for Population Means: An Overview |
|
|
321 | (3) |
|
Population Correlation Coefficient |
|
|
324 | (1) |
|
t Test for the Greeting Card Exchange |
|
|
324 | (2) |
|
|
326 | (1) |
|
|
326 | (5) |
|
|
326 | (1) |
|
|
327 | (4) |
|
Beyond Hypothesis Tests: p-Values and Effect Size |
|
|
331 | (14) |
|
|
332 | (1) |
|
|
332 | (1) |
|
|
333 | (1) |
|
Reading p-Values Reported by Others |
|
|
334 | (1) |
|
Merits of Less Structured (p-Value) Approach |
|
|
335 | (1) |
|
Level of Significance or p-Value? |
|
|
335 | (1) |
|
|
336 | (1) |
|
|
337 | (1) |
|
|
338 | (1) |
|
Statistically Significant Results |
|
|
338 | (1) |
|
Squared Point Biserial Correlation, r2pb |
|
|
339 | (2) |
|
Small, Medium, or Large Effect? |
|
|
341 | (1) |
|
|
341 | (4) |
|
|
342 | (1) |
|
|
342 | (3) |
|
Analysis of Variance (One Way) |
|
|
345 | (30) |
|
Testing a Hypothesis about Responsibility in Crowds |
|
|
346 | (2) |
|
Two Sources of Variability |
|
|
348 | (2) |
|
|
350 | (1) |
|
|
350 | (3) |
|
|
353 | (1) |
|
|
354 | (1) |
|
|
355 | (2) |
|
Mean Squares (MS) and the F Ratio |
|
|
357 | (2) |
|
|
359 | (1) |
|
|
360 | (2) |
|
|
362 | (1) |
|
|
362 | (1) |
|
Small, Medium, or Large Effect? |
|
|
362 | (2) |
|
|
364 | (1) |
|
|
365 | (2) |
|
Other Multiple Comparison Tests |
|
|
367 | (1) |
|
|
367 | (1) |
|
|
368 | (7) |
|
|
370 | (1) |
|
|
371 | (4) |
|
Analysis of Variance (Two Way) |
|
|
375 | (24) |
|
Testing Hypotheses about Reactions of Males and Females in Crowds |
|
|
376 | (1) |
|
Preliminary Interpretations |
|
|
376 | (3) |
|
|
379 | (2) |
|
|
381 | (1) |
|
|
382 | (1) |
|
|
383 | (2) |
|
Mean Squares (MS) and F Ratios |
|
|
385 | (1) |
|
|
386 | (1) |
|
|
387 | (1) |
|
Importance of Equal Sample Sizes |
|
|
387 | (1) |
|
|
387 | (3) |
|
|
390 | (1) |
|
Small, Medium, or Large Effect? |
|
|
390 | (1) |
|
|
391 | (1) |
|
|
391 | (1) |
|
|
392 | (7) |
|
|
393 | (1) |
|
|
394 | (5) |
|
Chi-Square (x2) Test for Qualitative Data |
|
|
399 | (24) |
|
|
400 | (1) |
|
|
400 | (2) |
|
Observed and Expected Frequencies |
|
|
402 | (1) |
|
|
402 | (2) |
|
X2 Tables and Degrees of Freedom |
|
|
404 | (1) |
|
|
405 | (2) |
|
X2 Test Is Nondirectional |
|
|
407 | (1) |
|
|
407 | (1) |
|
|
408 | (1) |
|
Observed and Expected Frequencies |
|
|
409 | (3) |
|
x2 Tables and Degrees of Freedom |
|
|
412 | (1) |
|
|
413 | (1) |
|
|
414 | (1) |
|
|
415 | (1) |
|
|
416 | (7) |
|
|
418 | (1) |
|
|
419 | (4) |
|
|
423 | (22) |
|
Use Only When Appropriate |
|
|
424 | (1) |
|
|
424 | (1) |
|
Mann-Whitney U Test (Two Independent Samples) |
|
|
425 | (1) |
|
|
425 | (2) |
|
Statistical Hypotheses for U |
|
|
427 | (1) |
|
|
427 | (2) |
|
|
429 | (1) |
|
|
429 | (2) |
|
|
431 | (2) |
|
Wilcoxon T Test (Two Matched Samples) |
|
|
431 | (2) |
|
|
433 | (1) |
|
Statistical Hypotheses for T |
|
|
433 | (1) |
|
|
433 | (1) |
|
|
434 | (1) |
|
|
434 | (2) |
|
Kruskal-Wallis H Test (Three or More Independent Samples) |
|
|
436 | (1) |
|
|
436 | (1) |
|
Statistical Hypotheses for H |
|
|
437 | (1) |
|
|
438 | (1) |
|
|
438 | (1) |
|
|
439 | (1) |
|
|
440 | (1) |
|
|
440 | (5) |
|
|
441 | (1) |
|
|
441 | (4) |
|
|
445 | (122) |
|
Descriptive or Inferential Statistics? |
|
|
445 | (1) |
|
Hypothesis Tests or Confidence Intervals? |
|
|
446 | (1) |
|
Quantitative or Qualitative Data? |
|
|
446 | (2) |
|
Distinguishing between the Two Types of Data |
|
|
448 | (1) |
|
One, Two, or More Groups? |
|
|
448 | (2) |
|
|
450 | (3) |
|
|
450 | (3) |
Appendices |
|
|
|
453 | (8) |
|
|
461 | (6) |
|
|
467 | (78) |
|
|
545 | (14) |
|
|
559 | (8) |
Index |
|
567 | |